First-Fit Coloring of Trees in Random Arrival Model

Bartłomiej Bosek, Grzegorz Gutowski, Michał Lasoń, Jakub Przybyło

Jagiellonian University, Polish Academy of Sciences, AGH University

金华市, 2024-05-08 arXiv: 2404.17011

Graph Coloring

Graph

Graph G = (V, E) with n = |V| vertices.

Graph Coloring

Graph

Graph G = (V, E) with n = |V| vertices.

Coloring

Function $c: V \mapsto \mathbb{Z}^+$ with $c(v) \neq c(w)$ for every $\{v, w\} \in E$.

Graph Coloring

Graph

Graph G = (V, E) with n = |V| vertices.

Coloring

Function $c: V \mapsto \mathbb{Z}^+$ with $c(v) \neq c(w)$ for every $\{v, w\} \in E$.

Chromatic number

 $\chi(G)$ – minimum possible k with coloring $c: V \mapsto \{1, 2, \dots, k\}$.

First-Fit Algorithm

Algorithm

- 1. Process vertices in order $v_1 \ll v_2 \ll \ldots \ll v_n$.
- 2. For vertex v_t use the first color that is not used as a color of any neighbor of v_j of v_t with j < t.

First-Fit Algorithm

Algorithm

- 1. Process vertices in order $v_1 \ll v_2 \ll \ldots \ll v_n$.
- 2. For vertex v_t use the first color that is not used as a color of any neighbor of v_j of v_t with j < t.

First-Fit chromatic number

 $\chi_{\mathsf{FF}}(\mathit{G},\ll)$ – maximum color used by First-Fit on G in order \ll .

Question

Is First-Fit a good algorithm? How much does $\chi_{FF}(G, \ll)$ differ from $\chi(G)$?

First-Fit Algorithm

Algorithm

- 1. Process vertices in order $v_1 \ll v_2 \ll \ldots \ll v_n$.
- 2. For vertex v_t use the first color that is not used as a color of any neighbor of v_j of v_t with j < t.

First-Fit chromatic number

 $\chi_{\mathsf{FF}}(\mathit{G},\ll)$ – maximum color used by First-Fit on G in order \ll .

Question

Is First-Fit a good algorithm? How much does $\chi_{FF}(G, \ll)$ differ from $\chi(G)$?

Answer

It all depends on the order \ll .

Bipartite graph

(1)

Bipartite graph

(1)

Bipartite graph

(1)

Bipartite graph

1

Bipartite graph

First-Fit can be optimal

- 1. Color *G* with *k* colors.
- 2. Construct \ll by sorting vertices by their color.
- 3. First-Fit uses at most k colors in this order.

Bipartite graph

(1)

Bipartite graph

(1

- $\chi(\mathsf{G}) = 2$ $\chi_{\mathsf{FF}}(\mathsf{G}, \ll) = \frac{\mathsf{n}}{2}$

Idea

Process vertices in random order.

Idea

Process vertices in random order.

Question

How many colors does First-Fit use on G, in expectation?

ldea

Process vertices in random order.

Question

How many colors does First-Fit use on G, in expectation?

Question

How many colors does First-Fit use on graphs in $\mathcal G$ with n vertices, in expectation?

ldea

Process vertices in random order.

Question

How many colors does First-Fit use on G, in expectation?

Question

How many colors does First-Fit use on graphs in $\mathcal G$ with n vertices, in expectation?

Question

How many colors does First-Fit use on trees with n vertices, in expectation?

Interesting Settings

Online Algorithms

First-Fit processes vertices without knowledge of the future.

Interesting Settings

Online Algorithms

First-Fit processes vertices without knowledge of the future.

Local Algorithms

First-Fit processes vertices without knowledge of the whole graph.

Interesting Settings

Online Algorithms

First-Fit processes vertices without knowledge of the future.

Local Algorithms

First-Fit processes vertices without knowledge of the whole graph.

Distributed Algorithms

Adding a random delay in distributed coloring algorithm allows to process vertices in random order.

Tree

(1

Tree

Tree

(1)

Tree

$$\blacktriangleright \chi(G) = 2$$

$$ightharpoonup \chi_{\mathsf{FF}}(\mathsf{G},\ll) = \log_2 \mathsf{n}$$

First-Fit on Forests in Random Order

Theorem

First-Fit uses
$$\left(\frac{1}{2}+o\left(1\right)\right)\cdot\frac{\ln n}{\ln \ln n}$$
 colors on trees with n vertices.

First-Fit on Forests in Random Order

Theorem

First-Fit uses
$$\left(\frac{1}{2}+o\left(1\right)\right)\cdot\frac{\ln n}{\ln \ln n}$$
 colors on trees with n vertices.

Meaning

$$\max_{G\text{ -- tree with }n}$$
 vertices \mathbb{E}_{\ll} - random order of $V[\chi_{\mathsf{FF}}(G,\ll)] \approx k$ for $n \approx k!$.

Proof (of a slightly weaker statement)

 \triangleright G^{\ll} is a directed graph with each edge in G directed towards the vertex later in \ll .

- $ightharpoonup G^{\ll}$ is a directed graph with each edge in G directed towards the vertex later in \ll .
- ▶ First-Fit uses color $k \implies G^{\ll}$ contains a directed k-path.

- $ightharpoonup G^{\ll}$ is a directed graph with each edge in G directed towards the vertex later in \ll .
- ▶ First-Fit uses color $k \implies G^{\ll}$ contains a directed k-path.

- \triangleright G^{\ll} is a directed graph with each edge in G directed towards the vertex later in \ll .
- ▶ First-Fit uses color $k \implies G^{\ll}$ contains a directed k-path.
- ▶ There are only n^2 different k-paths in the tree G.

- \triangleright G^{\ll} is a directed graph with each edge in G directed towards the vertex later in \ll .
- First-Fit uses color $k \implies G^{\ll}$ contains a directed k-path.
- ▶ There are only n^2 different k-paths in the tree G.
- lacksquare Probability that a fixed one is directed in ${\cal G}^\ll$ is $pprox rac{1}{k!}.$

- $ightharpoonup G^{\ll}$ is a directed graph with each edge in G directed towards the vertex later in \ll .
- ▶ First-Fit uses color $k \implies G^{\ll}$ contains a directed k-path.
- ▶ There are only n^2 different k-paths in the tree G.
- ▶ Probability that a fixed one is directed in G^{\ll} is $\approx \frac{1}{k!}$.
- For a constant probability of getting color k, we need $n^2 \approx k!$.

- Fix k target number of colors.
- Fix $\gamma > 0$ allowed error.
- ▶ Let $r \approx k \ln k / \gamma^2$.

- ightharpoonup Fix k target number of colors.
- Fix $\gamma > 0$ allowed error.
- ▶ Let $r \approx k \ln k / \gamma^2$.
- $ightharpoonup T_1^r$ is a single vertex, T_{i+1}^r has r copies of each T_1^r, \ldots, T_i^r .

- $ightharpoons \mathbb{P}_{\ll}(\chi_{\mathsf{FF}}(T_{k}^{r},\overline{\ll})\geqslant k)>1-\gamma.$
- ightharpoonup Instead of using a random order, use a random position in [0,1] for each vertex.

- $ightharpoonup \mathbb{P}_{\ll}(\chi_{\mathsf{FF}}(T_{\nu}^{r},\ll)\geqslant k)>1-\gamma.$
- Instead of using a random order, use a random position in [0,1] for each vertex.
- Inductively prove that root of T_i^r has $1-\varepsilon_i$ probability of getting color i. $\varepsilon_i=\frac{i\gamma}{L}$.

- Instead of using a random order, use a random position in [0,1] for each vertex.
- ▶ Inductively prove that root of T_i^r has $1 \varepsilon_i$ probability of getting color i. $\varepsilon_i = \frac{i\gamma}{k}$.
- For a fixed position x of the root, the probability that a child root of \mathcal{T}_j^r does not provide color j is bounded by $1 x + \varepsilon_j$.

- ightharpoonup Instead of using a random order, use a random position in [0,1] for each vertex.
- ▶ Inductively prove that root of T_i^r has $1 \varepsilon_i$ probability of getting color i. $\varepsilon_i = \frac{i\gamma}{k}$.
- ▶ For a fixed position x of the root, the probability that a child root of \mathcal{T}_j^r does not provide color j is bounded by $1 x + \varepsilon_j$.

$$\int_{\varepsilon_{i}}^{1} \left(1 - \left(1 - x + \varepsilon_{i}\right)^{r}\right)^{i} \partial x > 1 - \varepsilon_{i+1}$$

$$\int_{\varepsilon_i}^1 \left(1 - \left(1 - x + \varepsilon_i\right)^r\right)^i \partial x > 1 - \varepsilon_{i+1}$$

- ightharpoonup Instead of using a random order, use a random position in [0,1] for each vertex.
- ▶ Inductively prove that root of T_i^r has $1 \varepsilon_i$ probability of getting color i. $\varepsilon_i = \frac{i\gamma}{k}$.
- For a fixed position x of the root, the probability that a child root of \mathcal{T}_j^c does not provide color j is bounded by $1 x + \varepsilon_j$.

- ightharpoonup Instead of using a random order, use a random position in [0,1] for each vertex.
- ▶ Inductively prove that root of T_i^r has $1 \varepsilon_i$ probability of getting color i. $\varepsilon_i = \frac{i\gamma}{k}$.
- For a fixed position x of the root, the probability that a child root of \mathcal{T}_j^r does not provide color j is bounded by $1 x + \varepsilon_j$.
- $ightharpoonup T_k^r$ has $\approx k^k$ vertices.

Summary

Theorem

First-Fit uses $\left(\frac{1}{2} + o(1)\right) \cdot \frac{\ln n}{\ln \ln n}$ colors on trees with n vertices.

Summary

Theorem

First-Fit uses $(\frac{1}{2} + o(1)) \cdot \frac{\ln n}{\ln \ln n}$ colors on trees with n vertices.

Question

First-Fit on bipartite graphs

Thank You!