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Graph Coloring

Graph
Graph G = (V,E) with n = |V| vertices.

Coloring
Function c : V 7→ Z+ with c(v) 6= c(w) for every {v,w} ∈ E.

Chromatic number
χ(G) – minimum possible k with coloring c : V 7→ {1, 2, . . . , k}.
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First-Fit Algorithm

Algorithm
1. Process vertices in order v1 � v2 � . . . � vn.
2. For vertex vt use the first color that is not used as a color of any neighbor of vj of

vt with j < t.

1 1 2 2 3 3 4 4

First-Fit chromatic number
χFF(G,�) – maximum color used by First-Fit on G in order �.
Question
Is First-Fit a good algorithm? How much does χFF(G,�) differ from χ(G)?
Answer
It all depends on the order �.
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Optimistic Scenarios

Bipartite graph

2

1

First-Fit can be optimal
1. Color G with k colors.
2. Construct � by sorting vertices by their color.
3. First-Fit uses at most k colors in this order.
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Average Scenarios

Idea
Process vertices in random order.

Question
How many colors does First-Fit use on G, in expectation?

Question
How many colors does First-Fit use on graphs in G with n vertices, in expectation?

Question
How many colors does First-Fit use on trees with n vertices, in expectation?
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Interesting Settings

Online Algorithms
First-Fit processes vertices without knowledge of the future.

Local Algorithms
First-Fit processes vertices without knowledge of the whole graph.

Distributed Algorithms
Adding a random delay in distributed coloring algorithm allows to process vertices in
random order.
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First-Fit on Forests in Random Order

Theorem
First-Fit uses

(
1
2 + o (1)

)
· ln n

ln ln n colors on trees with n vertices.

Meaning
maxG – tree with n vertices E≪ – random order of V [χFF(G,�) ] ≈ k for n ≈ k!.
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Upper bound

Proof (of a slightly weaker statement)
▶ G≪ is a directed graph with each edge in G directed towards the vertex later in �.

▶ First-Fit uses color k =⇒ G≪ contains a directed k-path.
▶ There are only n2 different k-paths in the tree G.
▶ Probability that a fixed one is directed in G≪ is ≈ 1

k! .
▶ For a constant probability of getting color k, we need n2 ≈ k!.
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Lower bound
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Lower bound

Proof (of a slightly weaker statement)
▶ Fix k – target number of colors.
▶ Fix γ > 0 – allowed error.
▶ Let r ≈ k ln k / γ2.

▶ Tr
1 is a single vertex, Tr

i+1 has r copies of each Tr
1, . . . ,Tr

i .
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Lower bound

Proof (of a slightly weaker statement)
▶ P≪(χFF(Tr

k,�) ⩾ k) > 1− γ.

▶ Instead of using a random order, use a random position in [0, 1] for each vertex.
▶ Inductively prove that root of Tr

i has 1− εi probability of getting color i. εi =
iγ
k .

▶ For a fixed position x of the root, the probability that a child root of Tr
j does not

provide color j is bounded by 1− x + εj.

∫ 1

εi

(1− (1− x + εi)
r )i

∂x > 1− εi+1
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Integral
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Lower bound

Proof (of a slightly weaker statement)
▶ P≪(χFF(Tr

k,�) ⩾ k) > 1− γ.
▶ Instead of using a random order, use a random position in [0, 1] for each vertex.
▶ Inductively prove that root of Tr

i has 1− εi probability of getting color i. εi =
iγ
k .
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j does not
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Summary

Theorem
First-Fit uses

(
1
2 + o (1)

)
· ln n

ln ln n colors on trees with n vertices.

Question
First-Fit on bipartite graphs

Thank You!
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